Skip to main content

Camshift Tracker v0.1 up

https://code.google.com/p/os6sense/downloads/list

I thought I'd upload my tracker, watch the video from yesterday for an example of the sort of performance to expect under optimal conditions! Optimal conditions means stable lighting, and removing elements of a similar colour to that which you wish to track. Performance is probably a little worse, (and at best similar to) the touchless SDK.

Under suboptimal conditions...well its useless but then so are most trackers which is a real source of complaint about most of the computer vision research out there.....not that they perform poorly but rather that there is far too little honesty in just how poorly various algorithms perform under non-laboratory conditions.

I've a few revisions to make to improve performance and stability and I'm not proud of the code. It's been...8 years since I last did anything with C++ and to be frank I'd describe this more as a hack. Once this masters is out of the way I plan to look at this again and try out some of my ideas but I really see any approach which relies on colour based segmentation and standard webcams as having limited applicability.

So its taken a while but I hope this proves of use to someone someone some day.

Comments

Popular posts from this blog

I know I should move on and start a new blog but I'm keeping this my temporary home. New project, massive overkill in website creation. I've a simple project to put up a four page website which was already somewhat over specified in being hosted on AWS and S3. This isn't quite ridiculous enough though so I am using puppet to manage an EC2 instance (it will eventually need some server side work) and making it available in multiple regions. That would almost have been enough but I'm currently working on being able to provision an instance either in AWS or Rackspace because...well...Amazon might totally go down one day! Yes, its over-the-top but I needed something simple to help me climb up the devops and cloud learning curve. So off the bat - puppet installation. I've an older 10.04 Ubuntu virtual server which has been somewhat under-taxed so I've set that up as a puppet master. First lesson - always use the latest version from a tarball unless you have kept t...

More Observations

After this post I AM going to make videos ;) I spent some time doing some basic tests last night under non optimal (but good) conditions: 1) Double click/single click/long tap/short tap These all can be supported using in air interactions and pinch gestures. I'd estimate I had +90% accuracy in detection rate for everything apart from single click. Single click is harder to do since it can only be flagged after the delay for detecting a double click has expired and this leads to some lag in the responsiveness of the application. 2) The predator/planetary cursor design. In order to increase the stability of my primary marker when only looking at a single point e.g. when air drawing, I decided to modify my cursor design. I feel that both fiducial points should be visible to the user but it didn't quite "feel" right to me using either the upper or lower fiducial when concentrating on a single point hence I've introduced a mid-point cursor that is always 1/2 wa...

Finally...

Children back at school and I'm back off my hols (a rather interesting time in Estonia if you're interested). I've spent most of the last week becoming increasingly frustrated with my attempts at image segmentation. I've moved to a c++ implementation for speed and, while the VERY simplistic HSV segmentation technique I am using works, the problem is that I cannot get it to work robustly and doubt that it will ever do such. I've now covered the range of available techniques and even tried to plumb the depths of just emerging ones and it seems that every computer vision based object tracking implementation or algorithm suffers for the same issue with robustness (openTLD, camshift, touchless, hsv segmentation and cvBlob etc etc). YES, it can be made to work, but issues include (depending on the algorithm) : - Object drift : over time the target marker will cease to be recognised and other objects will become the target focus. - Multiple objects : During segments...