Skip to main content

Rewrite of fiducial detector

Its the last thing I want to do - I've roughed out code for most of the UI elements, the plumbing for the back-end works (although you can hear it rattle in places and there is considerable scope for improvement) but the marker detection code just isn't up for to the job and is getting a rewrite to use camshift and a Kalman filter. I tried the Kalman on the current code and its effective in smoothing the jitter caused by variations in centroid position but the continual loss of marker and the extreme numbers I am having to use to sense when the markers are engaged/unengaged is making it a frustrating experience.

I MUST come up with something working by Monday so that I can do something with this and was hoping to be tweaking various parameters of the interaction today but I'm going right back to stage one. Very frustrating but I ran a few experiments with the camshift algorithm and feel its required to make the air-writing implementation flow smoothly.

All nighter it looks like then :(

Comments

Popular posts from this blog

I know I should move on and start a new blog but I'm keeping this my temporary home. New project, massive overkill in website creation. I've a simple project to put up a four page website which was already somewhat over specified in being hosted on AWS and S3. This isn't quite ridiculous enough though so I am using puppet to manage an EC2 instance (it will eventually need some server side work) and making it available in multiple regions. That would almost have been enough but I'm currently working on being able to provision an instance either in AWS or Rackspace because...well...Amazon might totally go down one day! Yes, its over-the-top but I needed something simple to help me climb up the devops and cloud learning curve. So off the bat - puppet installation. I've an older 10.04 Ubuntu virtual server which has been somewhat under-taxed so I've set that up as a puppet master. First lesson - always use the latest version from a tarball unless you have kept t

Camshift Tracker v0.1 up

https://code.google.com/p/os6sense/downloads/list I thought I'd upload my tracker, watch the video from yesterday for an example of the sort of performance to expect under optimal conditions ! Optimal conditions means stable lighting, and removing elements of a similar colour to that which you wish to track. Performance is probably a little worse, (and at best similar to) the touchless SDK. Under suboptimal conditions...well its useless but then so are most trackers which is a real source of complaint about most of the computer vision research out there.....not that they perform poorly but rather that there is far too little honesty in just how poorly various algorithms perform under non-laboratory conditions. I've a few revisions to make to improve performance and stability and I'm not proud of the code. It's been...8 years since I last did anything with C++ and to be frank I'd describe this more as a hack. Once this masters is out of the way I plan to look a

More Observations

After this post I AM going to make videos ;) I spent some time doing some basic tests last night under non optimal (but good) conditions: 1) Double click/single click/long tap/short tap These all can be supported using in air interactions and pinch gestures. I'd estimate I had +90% accuracy in detection rate for everything apart from single click. Single click is harder to do since it can only be flagged after the delay for detecting a double click has expired and this leads to some lag in the responsiveness of the application. 2) The predator/planetary cursor design. In order to increase the stability of my primary marker when only looking at a single point e.g. when air drawing, I decided to modify my cursor design. I feel that both fiducial points should be visible to the user but it didn't quite "feel" right to me using either the upper or lower fiducial when concentrating on a single point hence I've introduced a mid-point cursor that is always 1/2 wa